
LTX-2: Efficient Joint Audio-Visual Foundation Model

Yoav HaCohen∗ Benny Brazowski Nisan Chiprut Yaki Bitterman
Andrew Kvochko Avishai Berkowitz Daniel Shalem Daphna Lifschitz Dudu Moshe

Eitan Porat Eitan Richardson Guy Shiran Itay Chachy Jonathan Chetboun
Michael Finkelson Michael Kupchick Nir Zabari Nitzan Guetta Noa Kotler

Ofir Bibi Ori Gordon Poriya Panet Roi Benita Shahar Armon
Victor Kulikov Yaron Inger Yonatan Shiftan Zeev Melumian Zeev Farbman

Lightricks
ltx-2@lightricks.com

Abstract

Recent text-to-video diffusion models can generate compelling video sequences,
yet they remain silent—missing the semantic, emotional, and atmospheric cues
that audio provides. We introduce LTX-2, an open-source foundational model
capable of generating high-quality, temporally synchronized audiovisual content
in a unified manner. LTX-2 consists of an asymmetric dual-stream transformer
with a 14B-parameter video stream and a 5B-parameter audio stream, coupled
through bidirectional audio-video cross-attention layers with temporal positional
embeddings and cross-modality AdaLN for shared timestep conditioning. This
architecture enables efficient training and inference of a unified audiovisual model
while allocating more capacity for video generation than audio generation. We
employ a multilingual text encoder for broader prompt understanding and introduce
a modality-aware classifier-free guidance (modality-CFG) mechanism for improved
audiovisual alignment and controllability. Beyond generating speech, LTX-2
produces rich, coherent audio tracks that follow the characters, environment, style,
and emotion of each scene—complete with natural background and foley elements.
In our evaluations, the model achieves state-of-the-art audiovisual quality and
prompt adherence among open-source systems, while delivering results comparable
to proprietary models at a fraction of their computational cost and inference time.
All model weights and code are publicly released. 2

1 Introduction
Recent text-to-video (T2V) diffusion models have achieved substantial progress, producing videos
with striking visual realism, motion consistency, and strong prompt fidelity. Models such as LTX-
Video [11], WAN 2.1 [27], and HunyuanVideo [13] demonstrate how large-scale latent diffusion
transformers can translate textual descriptions into temporally coherent and visually expressive video
content. Yet these models remain silent: they omit the semantic, emotional, and environmental
information conveyed by synchronized sound. As a result, their outputs, while visually stunning,
often feel incomplete and offer limited practical utility.

In parallel, text-to-audio (T2A) generation has evolved from task-specific systems toward more
general-purpose representations. Despite this progress, most text-to-audio models remain specialized
for specific domains—such as speech, music, or foley—rather than offering a unified, holistic
approach to audio generation. Consequently, recent attempts to achieve audiovisual generation
(T2AV) often rely on decoupled sequential pipelines: generating video (T2V) and then “filling
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in” the audio (V2A), or vice versa. We argue that such decoupled approaches are inherently sub-
optimal as they fail to model the full joint distribution of the two modalities. For instance, while lip
synchronization is primarily driven by audio, the acoustic environment—such as reverberation or
foley—is dictated by the visual context. A unified model is required to capture these bidirectional
dependencies.

Achieving a coherent audiovisual experience requires a unified model that jointly captures the
generative dependencies between vision and sound. While emerging proprietary systems such as Veo
3 [8] and the concurrent open-source Ovi [23] begin to explore this direction, the field still lacks an
open, efficient, and high-fidelity text-to-audio+video (T2AV) framework that learns both modalities
in an integrated manner.

In developing LTX-2 as an efficient multimodal foundation model, we prioritize both semantic
grounding and computational efficiency. Our architecture builds upon the design principles of
LTX-Video [11] and its spatiotemporal latent space, while introducing specialized components for
high-fidelity audio, multilingual support, and a refined text understanding pipeline—which we found
critical for high-quality speech generation and complex prompts. Our design is guided by the
following principles:

Decoupled Latent Representations. Rather than forcing video and audio into a shared latent space,
we utilize separate, modality-specific VAEs. This decoupling is fundamental to our approach: it
allows us to utilize modality-appropriate positional embeddings (3D for video vs. 1D for audio),
independently optimize compression levels for each signal type, and exercise precise control over
the model capacity allocated to vision versus sound. Furthermore, this separation natively supports
editing workflows, such as generating synchronized audio for an existing video (V2A) or synthesizing
video driven by a specific audio track (A2V).

Asymmetric dual stream. Video and audio possess fundamentally different information densities.
We process these modalities through an asymmetric dual-stream transformer architecture. A wide,
high-capacity stream handles the complex spatiotemporal dynamics of video, while a narrower,
specialized stream processes the 1D temporal nature of audio. This design ensures that computational
resources are spent where they are needed most—maintaining high visual fidelity without over-
parameterizing the audio pathway.

Cross-modal attention. To achieve tight temporal alignment, we integrate bidirectional cross-
attention layers throughout the model’s depth. By utilizing 1D temporal RoPE during these interac-
tions, the model learns to map visual cues (e.g., the impact of a physical object) to auditory events
(e.g., the resulting foley sound) with sub-frame precision. This enables the model to capture complex
dependencies like lip-synchronization and environmental acoustics without degrading the unimodal
generation quality of either stream.

Deep Multilingual Grounding for Speech. We found that advanced text understanding is critical
not only for global language support but for the phonetic and semantic accuracy of generated speech.
By leveraging a high-parameter multilingual text encoder (Gemma 3 [26]), a specialized multi-layer
feature extraction strategy, and dedicated text processing blocks for multi-token prediction, LTX-2
achieves a level of prompt adherence that permits highly expressive and accurate speech synthesis.
This allows the model to synthesize speech that is not only synchronized with visual lip movement
but also natural in its cadence, accent, and emotional tone.

Summary of Contributions

To realize these principles, we introduce several technical innovations. Our key contributions are as
follows:

• Efficient Asymmetric Dual-Stream Architecture: A transformer-based backbone featur-
ing modality-specific streams linked via bidirectional cross-attention and cross-modality
AdaLN for shared timestep conditioning.

• Text Processing Blocks with Thinking Tokens: A refined text-conditioning module
employing multi-token prediction for enhanced prompt understanding and semantic stability.

• Compact Neural Audio Representation: An efficient causal audio VAE that produces a
high-fidelity, 1D latent space optimized for diffusion-based training and inference.
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Figure 1: Overview of the LTX-2 architecture. Raw video and audio signals are encoded into modality-
specific latent tokens via causal VAEs, while text is processed through a refined embedding pipeline.
A dual-stream diffusion transformer jointly denoises audio and video latents with bidirectional
audiovisual cross-attention and text conditioning, producing synchronized audiovisual outputs.

• Modality-Aware Classifier-Free Guidance: A novel Bimodal CFG scheme that allows for
independent control over cross-modal guidance scales, significantly improving audiovisual
alignment.

Through these contributions, LTX-2 establishes a new open-source foundation for T2AV generation,
capable of producing coherent, expressive, and richly detailed content at unprecedented speed.

2 Related Work

Diffusion Transformers (DiTs) have emerged as a unifying architecture for large-scale generative
modeling. Introduced by Peebles and Xie [22], DiTs replace the traditional U-Net backbone with
a transformer operating in latent space, enabling superior scalability and global receptive fields.
Subsequent advances in Rectified Flow [14] have further optimized these models by framing denoising
as a continuous flow, reducing sampling steps and improving efficiency. These developments form
the architectural foundation for recent advances in multimodal generative models. LTX-2 builds on
this foundation, utilizing an asymmetric DiT backbone optimized for high-throughput multimodal
generation.

2.1 Audio and Video Generation

Text-to-Video Models. Recent text-to-video (T2V) models like LTX-Video [11] and WAN 2.1 [27]
demonstrate the power of DiT architectures trained on massive datasets to produce visually rich,
temporally coherent clips. While these models excel at visual realism and motion, they are intrinsically
"silent," omitting the auditory dimension that defines immersive content. LTX-2 extends the efficient
spatiotemporal architecture of LTX-Video [11] into the audiovisual domain, introducing a parallel
audio stream that maintains visual performance while adding synchronized sound.

Decoupled Audio-Visual Synthesis. Extensive research has focused on decoupled sequential
generation: either Audio-to-Video (A2V) [18, 7] or Video-to-Audio (V2A) [31, 2, 1]. However, these
sequential pipelines suffer from an inherent "modality-first" bottleneck. In V2A, the audio model is
constrained by a pre-existing video that may lack the necessary visual cues for complex soundscapes.
Conversely, A2V models struggle to synthesize realistic environmental foley or background ambiance
before the visual scene’s details are established. These decoupled approaches fail to capture the
recursive nature of audiovisual events, where sight and sound are often markers of the same physical
phenomenon. In contrast, LTX-2 models the true joint distribution of both modalities, allowing sound
and vision to influence each other bidirectionally.
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Joint Text-to-Audio+Video (T2AV) Models. The frontier of T2AV generation involves synthesizing
synchronized video and audio from a single text prompt. Proprietary systems like Veo 3 [8] have
shown the potential of this joint approach, but their architectures remain closed. Concurrent open-
source efforts, such as Ovi [23] and BridgeDiT [9], typically duplicate and combine existing T2V
and T2A backbones. Such approaches often lead to high computational overhead and limited cross-
modal synergy. LTX-2 differentiates itself by employing a decoupled yet integrated dual-stream
architecture. By utilizing asymmetric streams and bidirectional cross-attention, we achieve state-of-
the-art audiovisual alignment and complete soundscapes (speech, foley, and music) at a fraction of
the computational cost of symmetric or proprietary alternatives.

2.2 Text Conditioning

The evolution of text-conditioning has moved from training encoders from scratch [19] to leveraging
pretrained encoders such as T5 for scalability [24]. Modern approaches often combine frozen
encoders with trainable layers, either in parallel to the denoising process [5, 10] or as an intermediary
refinement stage [13]. While T5-like encoders remains a standard choice [8], recent models have
shifted toward decoder-only LLMs [30, 6]. However, decoder-only LLMs typically employ causal
attention, which can limit the global contextual awareness of the embeddings. To mitigate this,
recent work refines these tokens through bidirectional transformer blocks [13]. LTX-2 adopts this
bidirectional refinement but also introduces additional “thinking” tokens to the conditioning sequence.
This strategy allows the model to aggregate and enrich the text representation before it enters the
diffusion cross-attention layers, leading to significantly improved phonetic accuracy in speech and
better adherence to complex prompts.

3 Method

LTX-2 is a generative system designed to model the text-conditioned joint distribution of video and
audio signals. The model consists of three primary components: (i) modality-specific VAEs that
compress raw signals into efficient latent representations; (ii) a refined text embedding pipeline
that provides deep semantic and phonetic grounding; and (iii) an asymmetric dual-stream DiT that
performs joint denoising through bidirectional cross-modal exchange. See Figure 1.

The audiovisual signal is represented by latent tokens produced by modality-specific VAEs. Video
latents are obtained from a spatiotemporal causal VAE encoder. They are linearly projected to the
transformer’s internal width before being processed through a stack of DiT blocks. Audio latents
are derived from mel spectrograms at 16 kHz and encoded by a separate causal audio VAE. These
latents are treated as purely temporal sequences and undergo the same processing pipeline as the
video tokens.

The processed latents are mapped back to their original dimensionality via learned output projections.
The video latents are decoded by the video VAE to produce frames, while the audio latents are
decoded by the audio VAE into mel spectrograms, followed by a neural vocoder that reconstructs a
24 kHz waveform.

Text embeddings are processed through dedicated transformer blocks that also predict “thinking
tokens”. Both the original and thinking tokens are then fed, via cross-attention, into the dual-stream
transformer blocks.

The following sections detail the architectural and conditioning strategies used to achieve high-fidelity
synchronized audiovisual generation.

3.1 Audiovisual Joint Generation

The core of our system is an asymmetric dual-stream Diffusion Transformer (DiT) architecture. By
decoupling the video and audio processing into specialized streams while maintaining a shared depth,
we allow each modality to scale according to its own information density. See Figure 2.

The backbone comprises a high-capacity 14B-parameters for processing the video stream and
a 5B-parameters for processing the audio stream. Both streams process latent representations
derived from modality-specific causal VAEs. Each dual-stream block performs four operations
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(a) (b)

Figure 2: Proposed architecture. (a) The dual-stream backbone processes video and audio latents in
parallel, exchanging information via bidirectional cross-attention layers. (b) Detailed view of the
Cross-Attention block, utilizing Temporal 1D RoPE for positional alignment and cross-modality
AdaLN for timestep conditioning.

sequentially: Self-Attention within the same modality, Text Cross-Attention for textual-prompt
conditioning, Audio-Visual Cross-Attention for inter-modal exchange, and Feed-Forward Network
(FFN) for refinement. The video stream utilizes 3D Rotary Positional Embeddings (RoPE) to handle
spatiotemporal dynamics, while the audio stream uses 1D temporal RoPE. This asymmetry ensures
that the majority of parameters are dedicated to the visually complex task of video synthesis, while
the audio stream remains efficient.

Throughout the block, RMS normalization layers are interleaved between the main operations,
primarily to stabilize activations and maintain consistent scaling across layers. Furthermore, we
employ cross-modality AdaLN gates, where the scaling and shift parameters for one modality are
conditioned on the hidden states of the other. This allows the model to better synchronize audio and
video features, particularly when their diffusion timesteps or temporal resolutions differ.

3.1.1 Positional Encoding

The model employs rotary positional embeddings (RoPE) to encode temporal and spatial structure. In
the video stream, a 3D RoPE injects positional information along spatial and temporal axes (x, y, t),
preserving both motion and layout. In the audio stream, a 1D RoPE is applied along the temporal
dimension only.

During audio-visual interaction, only the temporal component of RoPE is used for queries and keys,
enforcing that cross-modal attention focuses on synchronization in time rather than spatial alignment.

3.1.2 Audio-Visual Cross-Attention

At each layer, the audio-visual cross-attention module enables bidirectional information flow between
streams. Both the video and audio hidden states are transformed into queries, keys, and values through
learned linear projections that share a common dimensionality. After these projections, an AdaLN
modulation conditioned on the stream’s diffusion timestep scales and shifts the Q and the (K,V )
tensors independently, allowing each modality to control how much of its current representation is
receptive or exposed to the other. Temporal rotary embeddings are then applied to Q and K, aligning
their positions along the shared time axis. Standard cross-attention is computed between video
queries and audio keys/values, and symmetrically in the opposite direction. The resulting attended
representation is passed through an additional AdaLN gate, whose parameters depend on the other
modality’s timestep, effectively regulating how much cross-modal information is integrated at that
stage of denoising.

Figure 3 shows the audio–visual cross-attention maps, illustrating how each modality attends to the
most relevant tokens in the other modality.
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<Car passing by>

“Listen to this” <Clapping> <Clapping>

<Car passing by>

“Listen to this”

S1: “I’m James” S2: “I’m Arnold” Both: “And we are in sync” S1: “I’m James” S2: “I’m Arnold” Both: “And we are in sync”

“Welcome… to LTX-2” “Welcome… to LTX-2”

Video-to-Audio Attention (Q: Audio; KV: Video) Audio-to-Video Attention (Q: Video; KV: Audio)

Figure 3: Visualization of AV cross-attention maps. The maps are averaged across attention heads
and the model layers; V2A and A2V maps correspond to the first and last 1/3 of inference steps,
respectively. Red vertical lines on the audio waveform mark the timestamps of the displayed frames.
The visualization demonstrates the model’s ability to spatially track a moving vehicle, dynamically
shift attention from one speaker to another and then to both simultaneously, and focus on the lip
region during close-up speech.

Additional details about the LTX-2 architecture are provided in the supplementary material.

3.2 Deep Text Conditioning and Thinking Tokens

To support the phonetic precision required for synchronized speech, we move beyond simple global
text embeddings. Our conditioning pipeline uses Gemma3-12B [26] as a backbone, refined through
two specialized stages (Figure 4).

For complex conditional generation tasks, relying exclusively on the final-layer embeddings from
decoder-only LLMs has been shown to be sub-optimal [15, 28]. Moreover, Gemma3-12B decoder-
only architecture employs causal (unidirectional) attention rather than full bidirectional context
modeling. Therefore, we employ the following two methods to compensate for the limitations of
causal attention and sub-optimal final-layer embeddings in complex conditional generation.

3.2.1 Multi-Layer Feature Extractor

Rather than relying on the final causal layer of the LLM, we extract features across all decoder layers.
These intermediate representations capture a hierarchy of linguistic meaning—from raw phonetics in
the early layers to complex semantics in the later ones. These features are projected into a unified
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embedding space using a learnable projection matrix W, providing a richer conditioning signal for
the diffusion process.

Enhanced Feature Representation. Studies demonstrate that aggregating information across all
decoder layers yields a richer, more comprehensive representation [10, 15, 28], providing superior
conditioning compared to the output of any single layer. This is primarily because linguistic structure
and meaning are distributed across a model’s depth [3, 25].

Feature Extractor Design. To capitalize on those findings, we designed a dedicated feature extractor
that processes the LLM’s intermediate layer outputs, which are provided with the shape [B, T,D,L].
Where B is the batch size, T the sequence length, D embedding dimension, L number of layers.

The extraction process involves three sequential steps:

1. Mean-centered scaling is applied to the intermediate outputs across the sequence and
embedding dimensions for each layer.

2. The scaled output is flattened into a representation of shape [B, T,D × L].

3. This high-dimensional representation is then projected to the target dimension D using a
learnable dense projection matrix W .

Joint Optimization and Freezing. The projection matrix W was jointly optimized with the LTX-2
model during a brief, initial training stage. Crucially, the LLM weights were kept entirely frozen
throughout this process.

Optimization was performed using the standard diffusion Mean Squared Error (MSE) loss. This
initial joint training yielded an improvement in the model’s overall quality. Following this initial
stage, the resulting projection matrix W was frozen and maintained for all subsequent training of the
LTX-2 system.

3.2.2 Text Enhancement with Thinking Tokens

To enable richer token interactions and contextual mixing before conditioning the diffusion trans-
former, we introduce a text connector module that jointly processes and refines the text embeddings
prior to their integration into the diffusion network. The text connector consists of transformer
blocks with full bidirectional attention that receives embeddings from the feature extractor and refines
them before conditioning the diffusion model. It incorporates a learnable set of thinking tokens
that are appended to its input tokens, replacing padded positions for improved computational utility.
Following recent findings in vision and multimodal transformers [4, 29, 21], the thinking tokens also
serve as effective global information carriers, allowing the connector to prepare extra tokens that may
carry aggregated contextual information, or missing details that are easier to generate semantically
rather than at the visual or audio space. The resulting sequence, containing both original and thinking
tokens, is processed through several transformer blocks and projected via a caption projection layer
to form the conditioning input of the diffusion transformer. A separate text connector is assigned to
each stream of the transformer, handling the video and audio modalities independently.

The text embedding connectors are trained together with the main audio and video DiT blocks.

3.3 The Audio VAE and Latent Space

Inspired by the efficient deep latent space introduced in [11], which demonstrated strong efficiency for
video diffusion, we adopt a similarly compact latent representation for audio. Our mel-spectrogram
parameterization scheme follows prior work [16, 17] on latent diffusion for audio, but extends the
audio autoencoder to natively support stereo signals by accepting two-channel mel-spectrograms.
Specifically, the input waveform is converted to stereo audio at a 16 kHz sampling rate. We compute
a mel-spectrogram for each channel and concatenate the resulting representations along the channel
dimension before processing them through the autoencoder. This produces a sequence of latent
tokens where each token corresponds to approximately 1/25 seconds of audio and is represented by a
128-dimensional feature vector.
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Figure 4: Overview of the Text Understanding pipeline. The text prompt is encoded by Gemma3 and
refined through the Feature Extractor and Text Connector to condition the modality-specific DiT.

3.3.1 Vocoder

To reconstruct the final waveform, we utilize a vocoder based on the HiFi-GAN architecture mod-
ified for joint stereo synthesis and upsampling. The generator is conditioned on tw-channel mel-
spectrograms (one per stereo channel) computed at 16 kHz and is trained to jointly synthesize a
two-channel waveform at a higher sampling rate of 24 kHz. To accommodate the increased complex-
ity of stereo modeling, we double the number of channels in the generator network relative to the
original HiFi-GAN V1 design. This increased capacity ensures high-fidelity audio reconstruction
and spatial consistency while maintaining the computational efficiency of the 16 kHz latent diffusion
process.

4 Inference

4.1 Inference Classifier-free Guidance (CFG)

During inference, we employ a multimodal extension of Classifier-free Guidance (CFG) [12] to
enhance cross-modal consistency and synchronization, while preserving both video and audio genera-
tion quality. Our architecture consists of two streams of Transformer blocks, one dedicated to the
video stream and one to the audio stream. Each stream is conditioned on textual input as well as on
features from the complementary modality through dedicated cross-attention layers.

We denote each stream as a model M, which receives as input: (i) x: the latent of the current modality
(video or audio), (ii) t: the text condition, and (iii) m: the features of the other modality.
To balance the contributions of the textual and cross-modal conditioning, we extend the standard
CFG formulation by introducing an additional guidance term for the complementary modality. For
each stream, the guided prediction is computed as:

M̂(x, t,m) = M(x, t,m) + st (M(x, t,m)−M(x,∅,m)) + sm (M(x, t,m)−M(x, t,∅))

Where st controls the strength of the textual guidance, and sm controls the strength of the cross-model
guidance. As illustrated in Figure 5, this formulation allows independent modulation of text and
inter-modal influences during inference.

Empirically, we observe that increasing sm promotes mutual information refinement between the
modalities. In particular, stronger cross-modal guidance leads to improved temporal synchronization
and semantic coherence between generated video and audio, suggesting that this new term effectively
aligns the dynamic and contextual information across modalities. For all reported results, we set the
guidance weights to st = 3 and sm = 3 for the video stream, and st = 7 and sm = 3 for the audio
stream.

4.2 Multi-scale, multi-tile inference

To enable high-resolution synthesis while maintaining the efficiency of our dual-stream architecture,
we employ a multi-scale, multi-tile inference strategy. This approach allows LTX-2 to generate Full-
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Figure 5: Multimodal Classifier-Free Guidance with independent text and cross-modal control. The
guided prediction is formed by combining the fully conditioned model output (orange) with two
guidance directions: a text guidance term scaled by st (green) and a cross-modal guidance term scaled
by sm (blue). This supports independent control of textual conditioning and inter-modal alignment
during inference.

HD (1080p) audiovisual content without the memory overhead typically associated with processing
high-resolution video latents in a single pass.

Base Generation: Inference begins at a lower resolution, where we generate a "base" latent rep-
resentation at approximately 0.5 Megapixels (MP). This initial stage establishes the global scene
composition, motion dynamics, and the foundational audio-visual synchronization.

Latent Upscaling: The base latents are then processed by a dedicated latent upscaler. This module
increases the spatial resolution of the video latents while maintaining temporal consistency and
auditory alignment, preparing the sequence for high-frequency detail enhancement.

Tiled Refinement: To achieve 1080p fidelity, the upscaled latents are partitioned into overlapping
spatial and temporal tiles. Each tile is refined independently using the same foundation model
parameters, allowing for the synthesis of intricate visual details—such as skin textures or fine
environmental elements—without exceeding GPU memory limits. The tiles are subsequently blended
in the latent space to ensure seamless transitions before final VAE decoding.

5 Training Data
We used a subset of the same dataset employed in LTX-Video [11], focusing on video clips that con-
tained significant and informative audio components. This subset provided a balanced distribution of
visual and auditory content, allowing us to design captions that fully capture multimodal information
relevant to both the image and auditory domains.

5.1 Captioning

To generate the high-fidelity textual data required for LTX-2 training, we developed a new video
captioning system capable of describing both the visual and auditory tracks of a clip in exhaustive
detail. The system was built to capture every meaningful actions, appearances and sounds.

Our goal was to create captions that are comprehensive yet factual, describing only what is seen
and heard without emotional interpretation. The system captures the full soundscape of each clip,
including music, ambient sounds, and precise transcriptions of dialogue with speaker, language,
and accent identification. Visual information encompasses camera motion, lighting, and subject
behavior. This captioning system provides a comprehensive textual interface between video, audio,
and language domains, forming the descriptive foundation for LTX-2’s multimodal training corpus.

6 Experiments
We evaluate LTX-2 across three key dimensions: audiovisual quality, visual-only performance via
established benchmarks, and computational efficiency. Our results demonstrate that LTX-2 is not
only the highest-performing open-source audiovisual model to date but also delivers unprecedented
inference speed.
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6.1 Audiovisual Evaluation

To assess the quality of joint audiovisual generation, we conducted human preference studies com-
paring LTX-2 to both open-source and proprietary state-of-the-art systems. Participants evaluated
samples based on visual realism, audio fidelity, and temporal synchronization (e.g., lip-sync and foley
accuracy).

Our internal benchmarks indicate that LTX-2 significantly outperforms open-source alternatives such
as Ovi [23]. Furthermore, LTX-2 achieves human preference scores comparable to leading proprietary
models, including Veo 3 [8] and Sora 2 [20]. These results establish LTX-2 as the premier open-source
foundation for unified audiovisual synthesis.

6.2 Video-Only Benchmarks

While LTX-2 is a multimodal model, its visual stream maintains top-tier performance on standard
video generation tasks. In the Artificial Analysis public rankings (as of November 6th, 2025), LTX-2
was ranked 3rd in Image-to-Video and 4th in Text-to-Video generation. Notably, it surpassed propri-
etary systems such as Sora 2 Pro and large-scale open models like Wan 2.2-14B [27], demonstrating
that our joint training strategy and architectural choices do not compromise visual quality.

6.3 Inference Performance and Scalability

The primary advantage of the LTX-2 architecture is its extreme efficiency. We compared the runtime
performance of LTX-2 (19B parameters, Audio+Video) against Wan 2.2-14B (Video-only) on an
NVIDIA H100 GPU. The benchmark was conducted using 121 frames at 720p resolution, with a
single-step Euler solver and CFG=1.

Table 1: Inference Speed and Temporal Scope. Comparison of per-step latency on H100 GPU and
maximum supported synchronized duration.

Model Modality Params Sec/Step
Wan 2.2-14B Video Only 14B 22.30s
LTX-2 Audio + Video 19B 1.22s

As shown in Table 1, LTX-2 is approximately 18× faster than Wan 2.2. Due to the optimized latent
space mechanism, this performance gap widens further at higher resolutions and longer durations.
Furthermore, thanks to its asymmetric design, LTX-2 is also faster than Ovi [23], which utilizes two
5B transformer streams fine-tuned from Wan 2.2-5B for audiovisual generation.

Temporal Scope. LTX-2 is capable of generating up to 20 seconds of continuous video with
synchronized stereo audio. This exceeds the temporal limits of existing alternatives, including
proprietary models like Veo 3 (12s) and Sora 2 (16s), as well as open-source models like Ovi (10s)
and Wan 2.5 (10s). This capability makes LTX-2 uniquely suited for long-form creative content and
complex narrative generation.

7 Limitations

While LTX-2 demonstrates strong audiovisual generation capabilities, several limitations remain.
First, performance varies across languages: prompts in languages or dialects underrepresented
in the training data may yield less accurate speech synthesis or weaker audio–visual alignment.
Second, in multi-speaker scenarios, the model may inconsistently assign spoken content to characters,
occasionally confusing which character should speak specific lines. In terms of temporal scope,
generating coherent audiovisual sequences longer than roughly 20 seconds can lead to temporal
drift, degraded synchronization, or reduced scene diversity. Finally, LTX-2 is a generative diffusion
model without explicit reasoning or world-modeling capabilities; deeper narrative coherence, factual
grounding, or complex situational understanding depend on external systems such as large language
models used to produce the conditioning text.
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8 Social Impact
Text-to-audio+video generation opens new avenues for creativity, accessibility, and communication.
Models like LTX-2 can enable content creators, educators, and storytellers to produce expressive
audiovisual material without requiring specialized equipment or large production teams. The ability to
generate synchronized visuals and audio from text has particular promise for low-resource languages
and accessibility applications—such as creating inclusive media with speech and sound for visually
impaired audiences, or dubbing and localizing educational content across linguistic and cultural
boundaries.

At the same time, the technology introduces ethical and societal challenges. Realistic synthetic media
carries potential for misuse, including the creation of deceptive or manipulative content. While LTX-2
is designed for research and creative purposes, responsible use requires clear disclosure of synthetic
origin and adherence to content and safety guidelines. Additionally, the model reflects biases present
in the data it was trained on, which may manifest in both visual and auditory modalities. Future work
should explore methods for bias mitigation, authenticity verification, and improved traceability to
ensure safe deployment and positive societal impact.

9 Conclusion
We introduced LTX-2, an open-source text-to-audio+video (T2AV) foundation model that jointly
generates synchronized video and audio from text. By extending a pretrained 13B video diffusion
transformer with a lightweight 3B audio stream connected through bidirectional cross-attention,
1D temporal RoPE, and cross-modality AdaLN conditioning, LTX-2 achieves efficient multimodal
generation without duplicating the visual backbone. Through modality-aware classifier-free guidance
and progressive joint training, the model produces coherent, expressive audiovisual content with
natural speech, ambient sound, and foley realism.

Experiments show that LTX-2 sets a new benchmark for open-source T2AV generation—achieving
state-of-the-art audiovisual quality while being the fastest model of its kind. We hope this work
establishes a practical foundation for scalable, accessible audiovisual synthesis and fosters further
research in multimodal generative modeling, cross-modal alignment, and controllable sound-aware
video generation.
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A Supplementary Material

A.1 Additional Figures

(a) (b)
Figure A1: LTX-2 training and inference pipelines. (a) Training pipeline: audio and video inputs are
encoded into latents, and the model is trained to match their velocity fields using a flow-matching loss.
(b) Inference pipeline: starting from noise in the audio and video latent spaces, the model iteratively
denoises over N diffusion steps to produce output latents. The VAE decoders and an upsampling
vocoder then reconstruct the final waveform and video.

Figure A2: Detailed view of a single stream of the model. The audio and video streams are identical
in architecture.
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